PRIMELINK, a High Level Service cn Tep of Today's PRIMENET PE-TI-900

DATE: August 20, 1981

TO: R & D Personnel

FROM: Ilya Gertner

SUBJECT: PRIMELINK, a High Level Service on Top of Today's PRIMENET

REFERENCE: PRIMENET, IPCF,Naming Service, PE-TI-729, PE-TI-816
KEYWORDS: None

ABSTRACT

Creating a better environment for distributed programming is essential
to speed up the develcpment of distributed applications. The
programming environment must address the following problems: naming of
services in a distributed system, resource management, inter-process
ccmmunication, and handling of exceptional conditions. This report
describes a prototype system that soclves those problems.

We view the distributed world as being composed of services and
clients. Services have access to resources and clients acting on
behalf of wusers obtain services. Our goals are to provide name and
location independence and to provide high 1level interfaces. Qur
implementation strategy 1is to break the problem into three parts: (1)
Naming Service, (2) PRIMOS Port and Process Manager, and (3) Local
Agent.

The prototype system 1is installed on RES.C1, RES.C2, and RES.C4., The
entire system runs as user code on tcp of PRIMOS REV. 18 and REV.19,
requiring no medification of the existing system's kernels. A few
working examples are used to illustrate the system.

'RD&E CONFIDENTIAL

PRIMELINK, a High Level Service on Top of Today's PRIMENET PE-TI-900

TABLE OF CONTENTS

1 Introduction . . . & & & v v v e ¢ e e e e e s e e e e e e e 3

=

2 An Informal Example. . . . ¢ ¢ o ¢ o o o o o o o o o o o o

2.1 0Overview . . v i i et e e e e e e e e e e e e e e e
2.2 The Server ProCesSsS . o« v « o « o o o o o o o o o o o =
2.3 The Client Process . . v v v v v ¢ e o o o o o o o o o o

3 User Interfaces . . & & v v v v o o o o o o o e e e e e e

3.1 Introduction e
3.2 Minimal User Interface e e e e e e s e e e e e e e e e

2 R O I .
3.2.2 C8STRT & . v v v v v v vt e e e e e e e e e e .
3.2.3 C3SEND & v v b b b e e e e e e e e e e e o e e e s el
3.2.4 CSRECV v ¢ v v v v e v . o e e o o = .1
3.2.5 C$CLOS o o 0w e e e . e e e e e e -
3.2.6 CSEXIT . . & v v v v v v v o o o o & . e e e e e e Wl

.
—_

3.3 Advanced User Interface . . & & v o« v v ¢ o o o o o o

[$)] += W — O W ~N O (o)} Ul &= =

.
—_

" 3.3.1 Naming Service & v v v v v 4 e e e e e e e e

33011 CSRGSR & v v v v vt e e e e e e e e e e e e e e
3.3.1T.2 CSCRSR v v v v v v vt e e e e e e e e e e e e e

.
—_
~N O

w

Error Handling « ¢ v v v v v v v o +« . .18

C$ERR

2.1 « o e . . B
.2.2 C$ERST e e e e e « o . . e« o« . . .20
.2.3 C$ERHN e e e e e e e e e e e21
.2.4 C$CHCN e e e e e o .. 22

wuu w WWWW n

w
.

Flow Contrecl and Multiplexing24

P CPLOCK & . v L L s s s s e s e e e d e e s
2 CBUNLO . & . . v v v vt s e e e e e e e e e e .. 26

.
UUW w L»JLA)U\)LA) w

.
UJLAJ

4 Additional Programming ToolS . . v v & v o v v v v o owou .. 27

4.1 Introduction to the Structure of Cache27
4.2 Message Tracing. . . . v v v v o v v o w v e, .27
4.3 Error Logging e e e e e e e e e e e .. .28
4.4 Debugging a Distributed Server st s e e e e e e e e . . W28

5 Conclusions00 e e e e e e e e e ; . .29

~

Appendix: A PL/I Example v v v v v v w o w oo .30

Page 2

PRIMELINK, a High Level Service on Top of Today's PRIMENET PE-TI-900

1. Introduction

Writing distributed programs for PRIMENET is difficult due to the 1low
level interface of the X.25 Packet Layer and the lack of the naming
service on the local network [PE-TI-729]. This report describes a
prototype system that preovides solutions to the following problems:
naming of services in a distributed system, resource management,
inter-process communication, and handling cof exceptional conditions in
the case of hardware or software failures. None of the ideas described
in this report are particularly "original" or novel. We have talked
about them for quite a while (PE-TI-729, PE-T-752, PE-TI-816). This
project, however, is unique in ccmbining all of these ideas 1in a
relatively coherent manner.

The distributed operating system consists of three programs:
NamingServer, PortManager, and LocalAgent. The NamingServer provides a
mapping between the user oriented service names and the 1location of
those services. For each node, the PortManager manages PRIMENET's
ports and PRIMOS processes. For each user, the LocalAgent provides a
convenient and easy to use interface to the distributed system.

This report has three major sections: Secticn 2 introduces the minimal
set of primitives by an example of a network server. The complete PL/1
prcgram is contained in the Appendix. Section 3 is the reference
manual to the wuser interface. Section Y describes additional
programming tools to aid the debugging and performance analysis of
distributed programs.

The system 1installaticen is trivial: each node must have the

PortManager running as a phantom;. a user program must load the PL/I
library ConLib.

Page 3

PRIMELINK, a High Level Service on Top of Today's PRIMENET PE-TI-900

2. An Informal Description of the Distributed Program

2.1. Overview

The purpecse of this section 1is to introduce the minimal set of
programming primitives for distributed applicaticns. The example used
throughout this section is the distributed version of the "Adventure"
program. (The Appendix ccntains PL/I sources of the program). The
distributed versicn is implemented by splitting the centralized version
of the program into two parts: client and server. The distributed
versicon of the program 1is very rocbust: each part of the prcgram
gracefully recovers from failures in the other part.

The server is essentially the centralized version of the program except
it has the new network service interface that replaces the old terminal
I/0 interface. 1Instead of communicating with a terminal, the server
communicates with the client. The client is a virtual terminal: wupon
the server's input request it prompts the user fcr more input from the
keybcard; upen the server's output request it displays data on the
screen,

The distributed program is very robust: failure of the server causes
the client to search for another machine to create the same service;
failure of the agent is ignored by the server, which simply waits for a
new agent to come up. This flexibility is easily implemented due to
the nature of the application: the occasional loss of output data may
be tolerated by a user who will repeat the input request; the 1lost
service will be automatically replaced by the service on ancother
machine. The resulting program survives crashes of machines with a
very high probability (the <crash of two machines simultanecusly will
disable the running program).

2.2 The Server Program

The server communicates with the client process, which acts 1like a
virtual terminal. To display data on the user terminal, the server
program calls procedure C$SEND that sends data to the client which in
turn will eventually output data to the terminal. To receive user
input data, the server first calls procedure C$SEND that sends a
request to the <client for more input and then waits for the data to
arrive with procedure C$RECV.

The server program easily recovers from various failures on the part of
the agent or on the part of the 1link cennecting the server te¢ the
agent. A failure in procedure the C$SEND is igncred by the server,
which uses the prccedure C$ERST to provide an "umbrella" for network
errors. A failure 1in procedure C$RECV at one of the connections
remains unnoticed because the server waits for a message to arrive at
any connection including any new connection yet tc be opened.

The crash of an agent during the moment when the server calls C$SEND
may cause some ocutput data to be lost. This is an acceptable situation

Page 4

PRIMELINK, a High Level Service on Top of Teday's PRIMENET PE-TI-900

since the user will not see the ncrmal reponse from the system and will
retype the request. The crash of an agent during the moment when the
server calls C$RECV 1is invisible to the server because no informatien
is lost.

2.3 The Client Program

To create a service on a remote machine the client calls procedure
C$CRSR that returns an identifier of the connection between the client
and the server. (The service must have been registered before with the
procedure C$RGSR). Procedures C$SEND and C$RECV use the identifier to
to send and receive data.

To protect the client from variocus error signals that may occur at the
connection the client uses function C$ERST. Any error will be trapped
to the main program where the service is again established on another
machine.

Page 5

“N

PRIMELINK, a High Level Service on Top of Today's PRIMENET PE-TI-900

3 User Interfaces

3.1 Introduction

This section is the reference manual for all the procedures in the
utility package. The PL/1 header "NetUser.Pl1' contains the entry
definitions of these procedures.

This section contains two major subsections: Subsection 3.2 describes
the minimal set of functions (six PL/I procedures) necessary to write
distributed programs. A more advanced user may read the Subsection 3.3
that describes various miscellaneocus routines.

Page 5

PRIMELINK, a High Level Service on Top of Today's PRIMENET PE-TI-900

3.2 Minimal User Interface

This section describes the six functions that are necessary for two
processes tc communicate. The functions are based on the concept of a
ccnnection that exists between two communicating processes.

Any process must call procedure C$INIT to 1initialize the network
environment and procedure C$EXIT to exit cleanly from the network
environment. Then, the client calls procedure C$STRT, which starts and
establishes the connection between the <client and the server. The
server simply waits for a message to arrive at any connection. Once
the connection is established, both process may send and receive
messages in any direction. A process sends a message with the function
C3SEND; a process receives a message with the function C$RECV. Both
processes release resources associated with the connection by calling
the function C$CLOS.

All utilities wuse a connection identifier as a parameter, thereby,
uniquely identifying one cpen connection. As an exception, the value
"minus one" (-1) represents any open connection. For example, a
process passing the value "minus one" %toc the function C$RECV waits for
a message to arrive at any open connection. Once the message arrives
at a particular connection, function C$RECV returns the data as well as
the identifier of the connection.

The description of each function has a PL/I entry statement. (Appendix
has listings of header 'NetUser.PL1', which contains PL/I entries of
all user functions). The variables 1in the parameter description
conform to the fcllowing convetions: a scalar variable is a short
integer; a buffer is a fixed length array; the length of the buffer
always represents the number of bytes. Scme functions have parameters
with a specified value "par =zvalue". Different parameter values will
cause different actions tc be taken by the function.

Page T

“a

PRIMELINK, a High Level Service on Top of Today's PRIMENET PE-TI-900

c$init

declare c$init entry;
The function "Initialize" must be called by any process at
initialization time. At execution time the function parses the
PRIMOS Command Line that contains system data. The PortManager

uses the command 1line to communicate with a distributed server
(see Section U4 about the exact structure of the command line).

Page 8

PRIMELINK, a High Level Service on Top of Today's PRIMENET PE-TI-900

“N

c$exit
declare c$exit entry;

The function "exit" must be called by any process that wishes to
cleanly exit from the network environement. Before completing a
user program, the process notifies the PortManager.

Page 9

PRIMELINK, a High Level Service on Top of Today's PRIMENET PE-TI-900

chstrt
declare c$strt entry(char(MAXSTR), fixed bin,
char (MAXSTR), fixed bin, fixed bin) returns(fixed bin);

connection = c$strt(target_node, len1,file name, len2, type);

The function "Start remote process" is performed in twec steps:

the first step creates the remote process according to

specified code segment or command file (the code segment

the
is

assumed to be a type SAM segment directory). The second step
creates a connection between the caller of C$STRT and the remcte
process. The function returns the connection identifier that is

used during the transfer of data. The function is based on

one

PRIMOS routine, PHANT$, for creating a new process and on three

PRIMENET prccedures, X$CONN, X$GCON and X$ACPT, for creating

connection.

connection = an identifier of the newly created
connecticn.

target_ncde = a buffer containing the ASCII name of the
PRIMENET system that is the target of this
connection request.

len1 = the length of target node.

Seg_name = a buffer containing the ASCII name of the
code segment or command file that is started
as a process.

len2 = the length of seg_name.

(=1), each time start the service for private use;

type
(22), start the service if it does not exist,
otherwise connect to the existing service;

(default: 1).

Page

a

10

PRIMELINK, a High Level Service on Top of Today's PRIMENET

c$send
declare c$send entry(fixed bin, char(MAXBUF), fixed bin);

call c$send(connection, data, len);

The procedure "Send and wait" sends a message at
connection. If the message 1is queued successfully,

PE-TI-900

the

returns immediately; otherwise, the sender 1is suspended.

suspend their computations until the system can

messages. It is based on two PRIMENET procedures:

sending data and X$WAIT for waiting until the
successfully queued.

connection = an identifier of the connection used

to send the buffer of data.
data = the data buffer.

len = the length of data.

Page

given
the sender
The
procedure is wused by dedicated processes that are willing to
queue their
X$TRAN for

message is

11

ﬁ

PRIMELINK, a High Level Service on Top of Today's PRIMENET PE-TI-900

c$recv

declare c$recv entry(fixed bin,char(MAXBUF),fixed bin,fixed bin)

returns(fixed bin);

res_con = c$recv(connection, data, len, timeout)
The function "Receive and copy into the user's space" attempts to
receive a message at the given connection and place the data into
the user provided buffer. If no message arrives in a specified
period of time, the function times cut and returns to the user.
The function is based on two PRIMENET procedures: X$RCV for
receiving a message and X$WAIT for waiting until the message
arrives.

res_con = output; an identifier of the connection on which the
message has been successfully retrieved;
(= 0), timeout, no message has arrived over
the specified pericd of time.

connection = input; an identifier of the connection on which to
wait for a message.

data = input; a pointer to the user provided buffer where
the received data is placed.

len = output; the actual length of the received buffer.

timeout = input; the maximum time interval in seconds that the
process is waiting for the message to arrive.

(=0), the function returns immediately,

(z=-1), the function waits forever,

(default: -=1).

Page 12

PRIMELINK, a High Level Service on Top of Today's PRIMENET PE-TI-900

ﬂ

c$clos
declare c$clos entry(fixed bin);

call c$clos(connection)

The procedure releases all system resources associated with the
connecticon. The procedure is based on PRIMENET subroutine X$CLR.

cennection = an identifier of the connection.

Page 13

PRIMELINK, a High Level Service on Top of Today's PRIMENET PE-TI-900

3.3 Advanced User Interface

This Section contains three independent subsections: Subsection 3.3.1
describes functions for registering and starting new services;
Subsection 3.3.2 describes functions for an advanced error handling;
Subsection 3.3.3 has functions for multiplexing and flcw control of a
stream of messages.

Page 14

PRIMELINK, a High Level Service on Top of Today's PRIMENET PE-TI-900

3.3.1 Naming Service

All services in a distributed system may be described by a unique
logical name that 1is independent c¢f 1location, thus preventing user
sensitivity to service 1location. PE-TI-729 has a more detailed
discussion of naming architecture,. This secticn describes two
functions, C$RGSR and C$CRSR, that support such an architecture.
Function C$RGSR allows a user to register a service on a given machine;
function C$CRSR uses that name in order to connect to that service.

Page 15

ﬂ

PRIMELINK, a High Level Service on Tep of Today's PRIMENET PE-TI-900

c$rgsr
declare c$rgsr entry(char(MAXSTR), fixed bin,
char (MAXSTR), fixed bin,char(MAXSTR), fixed bin);
char (MAXSTR), fixed bin);
call c$rgsr(name, lenl, target node, len2, seg name, len3,
password, lenk);
The function "Register a new Service" installs a new service in
the distributed system. The service may later be wused with
function C$CRSR, threby, providing for Name-Location independence.
name = a buffer containing the ASCII name of the
service,
len1 = the length of name.
target node = a buffer containing the ASCII name of the
PRIMENET system where to register

the service.

len2 = the length of target node.

seg_name = a buffer containing the ASCII name of the
ccmmand file or code segment of the
new service.

len3 = the length of seg _name.

password = a buffer containing the ASCII name of the
password of the service.

lenld = the length of password.

Page 16

PRIMELINK, a High Level Service on Top of Today's PRIMENET PE-TI-900

céersr

declare c$ersr entry(char(MAXSTR), fixed bin,
char (MAXSTR), fixed bin);

call c$ersr(name, lenl1, password, len2);

The function "Create a Service" locates and creates a service that
has been previously registered.

name = a buffer containing the ASCII name of the service.

len1

the length of name.
password = a buffer containing the ASCII password of the service.

len2 = the length of password.

Page 17

PRIMELINK, a High Level Service on Top of Today's PRIMENET PE-TI-900

3.2.3 Error Handling

Within a single process, procedure C$ERR signals the occurrence of an
error condition with a given severity code. Prccedure C$ERR typicaly
signals a network errcr condition with a certain severity code. Any
user defined error might also be signaled with the same procedure
C3ERR. To protect a prccedure call from errcr signals, a process may
call functicon C$ERST to provide an "umbrella" for error conditiens
signaled with prccedure C$ERR. A more powerful procedure C$ERHN is
similar in function to procedure C$ERST, but it provides an error
handler to be called to "fix" the error. If the error condition is
indeed "fixed", the wuser program continues from the point of
interruption.

Another way to handle network errors gracefully is to wait for a
message to arrive at any connection. A change 1in status of one
connection does not affect the status of the running process. The
process simply waits for the message to arrive at another connection.
To enable the process to cleanup its state, function C$CHCK checks the
status of the connection.

Page 18

PRIMELINK, a High Level Service on Top of Today's PRIMENET PE-TI-900

c$err
declare c$err entry(fixed bin, fixed bin,
char (MAXSTR), fixed bin)
options(variable);

call c$err(severity, error_code, data,len);
Procedure "Error" signals the occurrence of an error condition.
The error condition 1is propagated upwards in the stack. At a
higher level, function C$ERST might "catch" the error condition by
returning control to the caller of C$ERST. The "catch" occurs if
the function C$ERST is called with a higher severity code than the
procedure C$ERR is called. For example, the following call to
procedure C$ERR,
CALL C$ERR(50, ...)
1s caught by the following call to function C$ERST,

res = C$ERST(100, ...)

If no call to function C$ERST 1is present, the error condition
propagates to the top level and aborts the program. If the error
is caught by function C$ERHN, it invokes the specified exception
handler with the wuser provided data. The exception handler may
"fix" the error and return to the pocint of interruption or fail to
"fix" and allow the error condition to propagate to a higher level

at the stack. The cption "eptions(variable)" allows a user to
specify only the first two arguments: severity and error_code.

severity = severity code as chosen by the user;

(=0), do nothing but log the event.

error_code = the user generated error ccde.
data = a user buffer of data that is passed to the
exception handler in C$ERHN (optional).

len = the length of data (optional).

Page 19

PRIMELINK, a High Level Service on Top of Today's PRIMENET PE-TI-900

c$erst
declare c$erst entry(fixed bin, fixed bin, fixed bin,
entry(fixed bin, char(MAXSTR), fixed bin),
fixed bin, char(MAXSTR), fixed bin)
returns(fixed bin) options(variable);
err = c$erst(severity, error_code, res,
user_ function, con, data, len);
The function "Error Set" protects user function from error signals
with a 1lower severity (see procedure C$ERR). The option
"cptions(variable)" allows a user to pass a procedure with any
number of arguments of any type.
err = (=0), no error was caught;
otherwise, an error was signaled,
see error_code. severity = a user supplied severity code.
error_code = error code that was returned by C$ERR.
res = returned result of user funtion.
user_function = external procedure to be protected.
con= an identifier of the connection.
data= the buffer of data.
len= the length of data.
N.B. These three arguments represent a typical

example of user function.

Page 20

PRIMELINK, a High Level Service on Top of Today's PRIMENET PE-TI-900

c$erhn

declare c$erhn

err

entry(fixed bin, fixed bin, fixed bin,
entry(char(MAXSTR), len1),
entry(fixed bin, char(MAXSTR),fixed bin),
fixed bin, char(MAXSTR), fixed bin)
returns(fixed bin) options(variable);

c$erhn(severity, error_ccde, res, handler,
user_ function, con, data, len);

The function "Error Set and provide an error Handler" differs from

function C$ERST only in that it provides an exception handler that
may "fix" the error.

handler = external function having two arguments: DATA

and LEN which are passed to procedure C$ERR.

N.B. The handler is invoked upeon occurrence

of the error and returns a boclean value

a boolean value indicating whether or

indicating whether or not to abort the procedure
call in progress. If the returned value is TRUE,
the process continues from the point of
interruption; otherwise, the process returns

tc the caller of user function, a procedure

at the higher level in the stack.

Page 21

N\

PRIMELINK, a High Level Service on Top of Today's PRIMENET PE-TI-900

c$chen

declare c$chen entry(fixed bin, (2)fixed bin)
returns(fixed bin);

res = c$chcen(connection, status);

The function "Check Connecticn" checks the status of the
cennection.

res = returned result df the function;
(=0), the connection is dead;
("=0), the connection is alive.

con = identifier of the connection.

status = the returned connection status array that is
used to hold virtual circuit status

(see PRIMENET manual).

Page 22

PRIMELINK, a High Level Service on Top of Today's PRIMENET PE-TI-900

3.3.4 Flow Control and Multiplexing

PRIMENET can hcld only a limited number of messages in transit. If a
sender exceeds the system's capacity to hold messages in transit, the
sender is suspended (see procedure C$SEND). A receiver may force a
particular sender to be suspended by locking the queue at a given
connection. This is convenient for a receiver waiting for a message to
arrive at any open connection. A call to procedure C$LOCK 1locks the
queue at a given connection; a call to procedure C$UNLO unlocks the
connection.

Page 23

PRIMELINK, a High Level Service on Top of Today's PRIMENET PE-TI-900

c$lock
declare c$lcck entry(fixed bin);

call c$lock(connection);

The procedure "Lock" locks the connection with the effect that no
messages on the specified connection are accepted.

connection = identifier of the connection.

Page 24

PRIMELINK, a High Level Service on Top of Today's PRIMENET PE-TI-900
“N\
c$unlo
declare c$unlo entry(fixed bin);
call c$unlo(connection);
The prcocedure "Unlock" unlcecks the connection allcwing messages c¢n
the specified connection to be accepted.

coennection = identifier of the connection.

Page 25

PRIMELINK, a High Level Service on Top of Tocday's PRIMENET PE-TI-900

4 Additional Programming Tocls
4.1 Introduction tec the Structure of Cache Files

The Distributed Operating System 1is controlled by three tables: (1)
Servers,Cache which is accessed by LocalAgent; (2) Servers.Node which
is accessed by PortManager; (3) Servers.All which 1is accessed by
NamingServer. Each table is encoded as an ASCII files that may be
edited by an authorized user or modified by an asscciated pregram. The
existance of each file is optional, although the system may create it
during execution of a preogram. For example, Servers.Cache 1is updated
by LocalAgent that remembers the most frequently used services. The
absence of this file may result in additional requests being sent to
the NamingServer. The file Servers.Node contains all the services
registered on this particular node. The file 1is wupdated by the
PortManager which adds new services to the system. The file is created
by users who register new services.

The service tables are -encecded using conventions similar to those by
PRIMOS for encoding command lines. Each token is enccded by a key word
and value pair. The fecllowing example is a description of one server
in either the file Servers.Cache or Servers.Ncde.
-N Server1 -L location -S SegmentFile

-M message_trace option

-E error_logging_option -A access _control list

-P port_number -N Server?
To change the characteristics of a server, the user changes the file
Servers.Node; to change the Agent's viewpcint of the server, the user
changes Servers.Cache file (see Section 4.4 con debugging communicating
processes). Finally, to define characteristics of an agent the user

enters parameters in a command line. For example, to invoke an agent
with the message trace option the user enters the fcllowing command:

SEG AGENT -M 1

Page 26

PRIMELINK, a High Level Service on Top of Today's PRIMENET PE-TI-900
-~

4.2 Message Tracing
-M 1 this option enables the time-stamped message trace. facility.
For each message the system stores the following PL/I record:

declare

1 Trace,

2 UserNumber fixed bin,

2 Connection fixed bin,

n

Type fixed bin,

n

MessageCount fixed bin,

2 Len fixed bin,

2) Time fixed bin(31),

2) Blank fixed bin;
The system co}lects the message header in a PRIMOS segment pointed to ‘!\
by the variable Trace Seg. (Include entry "sy Trace_Seg

SEGMENT_NUMBER) in the load command). After completing the program's
execution, the trace information may be dumped to a file.

Page 27

PRIMELINK, a High Level Service on Top of Today's PRIMENET PE-TI-900

4.3 Error Logging
- 1 opens an error logging file for that process.
All calls to the procedure C$ERR are registered within

the file "Error.log".

74.4 Debugging the Interaction Between

a Pair of Communicating Processes

-p port-number, a debugging opticn allowing a user to
assign manually a port to a service.

To invoke the server, for example, a user types

SEG SEGMENT _FILE -p 5
to invoke the agent, the user must edit the file Servers.Cache so as to

medify the entry corresponding to the server that uses the chosen port
number,

Page 28

PRIMELINK, a High Level Service on Top of Today's PRIMENET PE-TI-900

6. Conclusions

The purpose of this project was both to develop a minimal prototype
system and to develop a methodology for distributed programming at
PRIME. This document describes all the primitives of the system and
also gives a few examples of distributed programs. The sources of some
such programs appear in the Appendix.

Our experience with a real system and real examples indicates that our
methods are sound and that even crude exception handling mechanisms
provides adequate means for writing robust programs. The next step 1is
to build more applications and gain more experience with distributed
programs.

Page 29

N\

PRIMELINK, a High Level Service on Top of Today's PRIMENET PE-TI-900

/¥ Appendix: PL/I Examples */
/® e %/

JERERRRRERRE R R RN RN RN AR RR AR RRRR R R R R R R RN TR R X ERRRRRRRRRR RN/
This precgram is a client for the distributed "Adventure" server.
It acts like a remcote virtual terminal. Upon server requests,
it proempts the user for more input; otherwise, it displays
the data on the screen. The procedure HandleMessage is
protected from network errors with the function C$ERST

The client communicates with twe servers: "Advi1" and "Adv2". If one
server dies, the client restarts ancther server. Both servers must have

been previously registered.

The main program waits for a request in an infinite loop.
The request is handled by procedure HandleMessage. All
network errors are protected with function C$ERST. If an error occurs,
the program an prints an error code, and the message
"connecting to another system".

Thereafter, it creates the alternate server.
JEER R ERA R AR RN R R R RN R AR R R R RERARRR AR AR R RE R RN RRRR RN RN/

Page 30

PRIMELINK, a High Level Service on Top of Today's PRIMENET

*/

0 then

stem');

/* CLIENT PROCESS */

main: procedure;

declare
(code, res, len, lend) fixed bin,
outcon fixed bin,
current fixed bin,
tempstr char(MAXSTR),
Games(2) char(MAXSTR),
Msg char(MAXBUF);

/¥ MAIN PROGRAM */
put skip list('started');

call c$init;

Games(1) = '"Advi1';

Games(2) = 'Adv2';

len = 4;

put skip list('initialized');

current = 1;

tempstr = Games(current);

outcon = c$crsr(Games(current), len, '', 0);

put skip list('connected');

call EncodeFortranString(Msg, 'yes', 3);

call c$send(outcon, Msg, 3*4); /*¥ the length of

de while('1'B);

if c$erst(SYSERR, code, res, HandleMsg, outcon, Msg, len) *

do;
put skip list('error:=', code, ' connecting to another sy
if current = 1

then current = 2;
else current = 1;
tempstr = Games(current);
ocutcon = c$cersr(Games(current), len,
put skip list('connected');
put skip list(' ');
end;
end;

", 003

PE-TI-900

Page

FORTRAN buff

-

31

N\

PRIMELINK, a High Level Service on Top of Today's PRIMENET PE-TI-900

/* CLIENT, support rcutines ¥/

/***/

This procedure implements the virtual terminal. Upon server requests,
(TIOFIX(1) = -1), the procedure prompts the user for more input;
otherwise, the procedure displays data on the screen. In both

cases, the data must be converted from FORTRAN string representation

into PL/I string representation.
JEERERRRRRERRRR AR R R AR R R R AR R AR RRR AR AR R RRRR AR R RRRRNRRRRRR R RN NN/

HandleMsg: procedure(con, TIOArr, len) returns(fixed bin);
declare
TIOArr char(MAXBUF),
con,
len fixed bin;
declare
TIOFix(HALFBUF) fixed bin defined(TIOArr),
timeout fixed bin,
i fixed bin,
FirstNum fixed bin,
Str char(128),
VarStr char(128) var;

timeout = c$recv(con, TIOArr, len, 500);
if timeocut = 0 then call c$err(SYSERR, NORESPONSE);
lend = len/lU;
FirstNum = TIOFix(1);
if FirstNum "= -1 then
do;
call DecodeFortranString(TIOArr, Str, lenl);
put skip edit(substr(Str, 1, lend)) (a);
end;
else
do;
get list(VarsStr);
lend4 = length(VarStr);
call EnccdeFortranString(TIOArr, VarStr, lenl);
call c$send(con, TIOArr, leni*4); /* the length of FOR
TRAN buff ¥/
end;
return(1);
end HandleMsg;

EnccdeFortranString: procedure(TIOArr, VarStr, lenl);
declare
TIOArr char(MAXBUF),
1 TIOMsg defined(TIOArr),
2 REC(128),
3 Data char(1),
3 BlankData char(3),
VarStr char(128) var,
lend fixed bin;
declare

Page 32

PRIMELINK, a High Level Service on Top of Today's PRIMENET PE-TI-G00

N

i fixed bing
/* encode into FORTRAN LONG INTEGER FORMAT %/

do i=1 to lenl;
TIOMsg.Data(i) = substr(VarStr, i, 1);
TIOMsg.BlankData(i) = ' ';
end;
lend = lend4 + 1; /* append a blank */
TIOMsg.Data(lend) = ' ';
end EncodeFortranString;

DecodeFortranString: procedure(TIOArr, Str, lenl);
declare
TIOArr char(MAXBUF),
1 TIOMsg defined(TIOArr),
2 REC(128),
3 Data char(1),
3 BlankData char(3),
Str char(128),
lenld4 fixed bing
declare
i fixed bin;
/* decode from FORTRAN LONG INTEGER FORMAT */ ‘ﬂ\
do i=1 to leni;
substr(Str, i, 1) = TIOMsg.Data(i);

end;
end DeccdeFortranString;

Page 33

PRIMELINK, a High Level Service con Top of Today's PRIMENET PE-TI-900

/* ADVENTURE-SERVER PROCESS, NETWORK INTERFACE */

VASAA AR R 2R R R X 222 A R 22 AR 2222 2]]2 N

This set of network interface routines replaces the original
terminal I/0 routines. Incoming data is received

with procedure M$RCCP; cutput data is sent with procedure
M$SEND. The variable NetOn indicates whether the network package

is being used.
JERR AR AR RRRRRRRRERRRRE RN R RARRRER R R RN RRRRRRRRRRRRRRRRR RN RRNR

M$RCCP: procedure(con, buf, len);

declare (con, len) fixed bin(31);

declare buf char(512),
NetOn fixed bin(15) external,
len1 fixed bin(15);

if NetOn "= 0 then

con = c$recv(-1, buf,lent, -1);

len = len1;

return;

end M$RCCP;

M$SNWT: procedure(con, buf, len);

declare (con, len) fixed bin(31);
declare buf char(512),

dum fixed bin,

(code, res) fixed bin,

NetOn fixed bin(15) external;

if NetOn "= 0 then

dum = c$erst(SYSERR, code, res, c$send,con, buf, len);
return;
end M$SNWT;

M$INIT: procedure(con);
declare con fixed bin(31);
declare buf char(512),
NetOn fixed bin(15) external init(1),
len fixed bin(15);

if NetOn "= Q0 then

doj

call c$init();

con = c$recv(-1, buf,len, -1);
end;

end M$INIT;

Page 34

PRIMELINK, a High Level Service on Top of Today's PRIMENET PE-TI-900

/* NETUS
/* This

declare

declare
c$err
c$send
c$recv
c$clos

cderst

s(fixed bin),

c$erhn

s(fixed bin),

n))

c$chen
declare

c$init

c$strt

ER.PL1 HEADER */
is a standard header typicaly used by a server ¥/

MAXSTR by 60,
MAXBUF by 512,
HALFBUF by 256,

/% common errors */

FATAL by 100,
SYSERR by 50,
USRERR by 25,

NOTIMP by -1,
BADPROT by -2,
NORESPONSE by -3;

/* msg(1) values: request and reply %/
/* reply %/

REP_OK by 0,
REP_ERR by 1;

/¥ request */

(addr,null, substr, index, length) builtin;

entry(fixed bin, fixed bin),

entry(fixed bin, char(MAXBUF), fixed bin),
entry(fixed bin, char(MAXBUF), fixed bin, fixed bin)
returns(fixed bin),

entry(fixed bin),

entry(fixed bin, fixed bin, fixed bin,
entry(fixed bin, char(MAXBUF),fixed bin) return

fixed bin,char(MAXBUF), fixed bin)
returns(fixed bin),

entry(fixed bin, fixed bin, fixed bin,
entry(fixed bin,char(MAXBUF), fixed bin) return

fixed bin,char(MAXBUF), fixed bin,
entry(char(MAXSTR), fixed bin) returns(fixed bi

returns(fixed bin),
entry(fixed bin, (2)fixed bin) returns(fixed bin);

entry,
entry(char(MAXSTR), fixed bin, char(MAXSTR),

Page 35

N

-

PRIMELINK, a High Level Service on Top of Today's PRIMENET PE-TI-900

n)

fixed bin, fixed bin)
returns(fixed bin),
c$rgsr entry(char(MAXSTR), fixed bin, char(MAXSTR), fixed bi

char (MAXSTR), fixed bin,
char(MAXSTR), fixed bin, fixed bin),
c$ersr entry(char(MAXSTR), fixed bin, char(MAXSTR), fixed bi

returns(fixed bin);
declare
DefaultArg entry(fixed bin, fixed bin, fixed bin);
declare
Debug fixed bin external;

Page 36

	Cover Page
	1
	Table of Contents
	2
	Introduction
	3
	An Informal Example
	4
	5
	User Interfaces
	-- Introduction
	6
	-- Minimal User Interfaces
	7
	8
	9
	10
	11
	12
	13
	-- Advanced User Interfaces
	14
	---- Naming Service
	15
	16
	17
	---- Error Handling
	18
	19
	20
	21
	22
	---- Flow Control and Multiplexing
	23
	24
	25
	Additional Programming Tools
	26
	27
	28
	Conclusions
	29
	Appendix: A PL/I Example
	30
	31
	32
	33
	34
	35
	36

