
PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET PE-TI-900

DATE:

TO:

FROM:

SUBJECT:

REFERENCE:

KEYWORDS:

August  20,  1981

R&D  Personnel

Ilya  Gertner

PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET

PRIMENET,  IPCF,Naming  Service,  PE-TI-729,  PE-TI-816
None

ABSTRACT

Creating  a  better  environment  for  distributed  programming  is  essential
t o  s p e e d  u p  t h e  d e v e l o p m e n t  o f  d i s t r i b u t e d  a p p l i c a t i o n s .  T h e
programming  environment  must  address  the  following  problems:  naming  of
services  in  a  distributed  system,  resource  management,  inter-process
communicat ion,  and  handl ing  of  exceptional  condit ions.  This  report
describes  a  prototype  system  that  solves  those  problems.

We  view  the  distributed  world  as  being  composed  of  services  and
clients.  Services  have  access  to  resources  and  clients  acting  on.
behalf  of  users  obtain  services.  Our  goals  are  to  provide  name  and
locat ion  independence  and  to  prov ide  h igh  level  in ter faces.  Our
implementation  strategy  is  to  break  the  problem  into  three  parts:  (1)
Naming  Service,  (2)  PRIMOS  Port  and  Process  Manager,  and  (3)  Local
Agent.

The  prototype  system  is  installed  on  RES.C1,  RES.C2,  and  RES.C4.  The
entire  system  runs  as  user  code  on  top  of  PRIMOS  REV.  13  and  REV.19,
requir ing  no  modificat ion  of  the  exist ing  system's  kernels.  A  few
working  examples  are  used  to  illustrate  the  system.

RD&E CONFIDENTIAL



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

TABLE OF CONTENTS

1  I n t r o d u c t i o n  3

2  A n  I n f o r m a l  E x a m p l e  4

2 . 1  O v e r v i e w  4
2 . 2  T h e  S e r v e r  P r o c e s s  4
2 . 3  T h e  C l i e n t  P r o c e s s  5

3  U s e r  I n t e r f a c e s  6

3 . 1  I n t r o d u c t i o n  6
3 . 2  M i n i m a l  U s e r  I n t e r f a c e  7

3 . 2 . 1  C $ I N I T  8
3 . 2 . 2  C $ S T R T  9
3 . 2 . 3  C $ S E N D  . 1 0
3 . 2 . 4  C $ R E C V  1 1
3 . 2 . 5  C $ C L 0 S  1 2
3 . 2 . 6  C $ E X I T  1 3

3 . 3  A d v a n c e d  U s e r  I n t e r f a c e  1 4

3 . 3 . 1  N a m i n g  S e r v i c e  1 5

3 . 3 . 1 . 1  C $ R G S R  1 6
3 . 3 . 1 . 2  C $ C R S R  1 7

3 . 3 . 2  E r r o r  H a n d l i n g  1 8

3 . 3 . 2 . 1  C $ E R R  1 9
3 . 3 . 2 . 2  C $ E R S T  2 0
3 . 3 . 2 . 3  C $ E R H N  2 1
3 . 3 . 2 . 4  C $ C H C N  2 2

3 . 3 . 3  F l o w  C o n t r o l  a n d  M u l t i p l e x i n g  2 4

3 . 3 . 3 . 1  C $ L 0 C K  2 5
3 . 3 . 3 . 2  C $ U N L 0  2 6

4  A d d i t i o n a l  P r o g r a m m i n g  T o o l s  2 7

4 . 1  I n t r o d u c t i o n  t o  t h e  S t r u c t u r e  o f  C a c h e  2 7
4 . 2  M e s s a g e  T r a c i n g  2 7
4 . 3  E r r o r  L o g g i n g  .  .  .  .  .  .  . 2 8
4 . 4  D e b u g g i n g  a  D i s t r i b u t e d  S e r v e r  2 8

5  C o n c l u s i o n s  2 9

A p p e n d i x :  A  P L / I  E x a m p l e  3 0

Page



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

1 .  I n t r o d u c t i o n

Writing  distributed  programs  for  PRIMENET  is  difficult  due  to  the  low
level  interface  of  the  X.25  Packet  Layer  and  the  lack  of  the  naming
service  on  the  local  network  [PE-TI-7291.  This  report  describes  a
prototype  system  that  provides  solutions  to  the  following  problems:
naming  of  services  in  a  distributed  system,  resource  management,
inter-process  communication,  and  handling  of  exceptional  conditions  inthe  case  of  hardware  or  software  failures.  None  of  the  ideas  described
in  this  report  are  particularly  "original"  or  novel.  We  have  talked
about  them  for  quite  a  while  (PE-TI-729,  PE-T-752,  PE-TI-816).  This
project,  however,  is  unique  in  combining  all  of  these  ideas  in  a
relatively  coherent  manner.
T h e  d i s t r i b u t e d  o p e r a t i n g  s y s t e m  c o n s i s t s  o f  t h r e e  p r o g r a m s :
NamingServer,  PortManager,  and  LocalAgent.  The  NamingServer  provides  a
mapping  between  the  user  oriented  service  names  and  the  location  of
those  services.  For  each  node,  the  PortManager  manages  PRIMENET's
ports  and  PRIMOS  processes.  For  each  user,  the  LocalAgent  provides  a
convenient  and  easy  to  use  interface  to  the  distributed  system.

This  report  has  three  major  sections:  Section  2  introduces  the  minimal
set  of  primitives  by  an  example  of  a  network  server.  The  complete  PL/1
program  is  contained  in  the  Appendix.  Section  3  is  the  reference
m a n u a l  t o  t h e  u s e r  i n t e r f a c e .  S e c t i o n  4  d e s c r i b e s  a d d i t i o n a l
programming  tools  to  aid  the  debugging  and  performance  analysis  of
distr ibuted  programs.

T h e  s y s t e m  i n s t a l l a t i o n  i s  t r i v i a l :  e a c h  n o d e  m u s t  h a v e  t h e
PortManager  running  as  a  phantom;,  a  user  program  must  load  the  PL/I
l ibrary  ConLib.

Page



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

2.  An  Informal  Description  of  the  Distributed  Program

2.1.  Overview

The  purpose  of  this  section  is  to  introduce  the  minimal  set  of
programming  primitives  for  distributed  applications.  The  example  used
throughout  this  section  is  the  distributed  version  of  the  "Adventure"
program.  (The  Appendix  contains  PL/I  sources  of  the  program).  The
distributed  version  is  implemented  by  splitting  the  centralized  version
of  the  program  into  two  parts:  client  and  server.  The  distributed
version  of  the  program  is  very  robust:  each  part  of  the  program
gracefully  recovers  from  failures  in  the  other  part.
The  server  is  essentially  the  centralized  version  of  the  program  except
it  has  the  new  network  service  interface  that  replaces  the  old  terminal
I/O  interface.  Instead  of  communicating  with  a  terminal,  the  server
communicates  with  the  client.  The  client  is  a  virtual  terminal:  upon
the  server's  input  request  it  prompts  the  user  for  more  input  from  the
keyboard;  upon  the  server's  output  request  it  displays  data  on  the
screen.

The  distributed  program  is  very  robust:  failure  of  the  server  causes
the  client  to  search  for  another  machine  to  create  the  same  service;
failure  of  the  agent  is  ignored  by  the  server,  which  simply  waits  for  a
new  agent  to  come  up.  This  flexibility  is  easily  implemented  due  to
the  nature  of  the  application:  the  occasional  loss  of  output  data  may
be  tolerated  by  a  user  who  will  repeat  the  input  request;  the  lost
service  wil l  be  automatical ly  replaced  by  the  service  on  another
machine.  The  resulting  program  survives  crashes  of  machines  with  a
very  high  probability  (the  crash  of  two  machines  simultaneously  will
disable  the  running  program).

2.2  The  Server  Program

The  server  communicates  with  the  client  process,  which  acts  like  a
virtual  terminal.  To  display  data  on  the  user  terminal,  the  server
program  calls  procedure  C$SEND  that  sends  data  to  the  client  which  in
turn  wil l  eventually  output  data  to  the  terminal.  To  receive  user
input  data,  the  server  first  calls  procedure  C$SEND  that  sends  a
request  to  the  client  for  more  input  and  then  waits  for  the  data  to
arrive  with  procedure  C$RECV.

The  server  program  easily  recovers  from  various  failures  on  the  part  of
the  agent  or  on  the  part  of  the  link  connecting  the  server  to  the
agent.  A  failure  in  procedure  the  C$SEND  is  ignored  by  the  server,
which  uses  the  procedure  C$ERST  to  provide  an  "umbrella"  for  network
errors.  A  failure  in  procedure  C$RECV  at  one  of  the  connections
remains  unnoticed  because  the  server  waits  for  a  message  to  arrive  at
any  connection  including  any  new  connection  yet  to  be  opened.

The  crash  of  an  agent  during  the  moment  when  the  server  calls  C$SEND
may  cause  some  output  data  to  be  lost.  This  is  an  acceptable  situation

P a g e  4



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

since  the  user  will  not  see  the  normal  reponse  from  the  system  and  will
retype  the  request.  The  crash  of  an  agent  during  the  moment  when  the
server  calls  C$RECV  is  invisible  to  the  server  because  no  information
is  lost.

2.3  The  Client  Program

To  create  a  service  on  a  remote  machine  the  client  calls  procedure
C$CRSR  that  returns  an  identifier  of  the  connection  between  the  client
and  the  server.  (The  service  must  have  been  registered  before  with  the
procedure  C$RGSR).  Procedures  C$SEND  and  C$RECV  use  the  identifier  to
to  send  and  receive  data.

To  protect  the  client  from  various  error  signals  that  may  occur  at  the
connection  the  client  uses  function  C$ERST.  Any  error  will  be  trapped
to  the  main  program  where  the  service  is  again  established  on  another
machine.

Page



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

3  User  Interfaces

3.1  Introduct ion

This  section  is  the  reference  manual  for  all  the  procedures  in  the
uti l i ty  package.  The  PL/1  header  "NetUser.P11'  contains  the  entry
definitions  of  these  procedures.

This  section  contains  two  major  subsections:  Subsection  3.2  describes
the  minimal  set  of  functions  (six  PL/I  procedures)  necessary  to  write
distributed  programs.  A  more  advanced  user  may  read  the  Subsection  3.3
that  describes  various  miscellaneous  routines.

Page



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

3.2  Minimal  User  Interface

This  section  describes  the  six  functions  that  are  necessary  for  two
processes  to  communicate.  The  functions  are  based  on  the  concept  of  a
connection  that  exists  between  two  communicating  processes.

Any  process  must  call  procedure  C$INIT  to  init ial ize  the  network
environment  and  procedure  C$EXIT  to  exit  cleanly  from  the  network
environment.  Then,  the  client  calls  procedure  C$STRT,  which  starts  and
establishes  the  connection  between  the  client  and  the  server.  The
server  simply  waits  for  a  message  to  arrive  at  any  connection.  Once
the  connection  is  established,  both  process  may  send  and  receive
messages  in  any  direction.  A  process  sends  a  message  with  the  function
C$SEND;  a  process  receives  a  message  with  the  function  C$RECV.  Both
processes  release  resources  associated  with  the  connection  by  calling
the  function  C$CL0S.

Al l  ut i l i t ies  use  a  connect ion  ident ifier  as  a  parameter,  thereby,
uniquely  identifying  one  open  connection.  As  an  exception,  the  value
"minus  one"  (-1)  represents  any  open  connection.  For  example,  a
process  passing  the  value  "minus  one"  to  the  function  C$RECV  waits  for
a  message  to  arrive  at  any  open  connection.  Once  the  message  arrives
at  a  particular  connection,  function  C$RECV  returns  the  data  as  well  as
the  identifier  of  the  connection.

The  description  of  each  function  has  a  PL/I  entry  statement.  (Appendix
has  listings  of  header  'NetUser.PL1',  which  contains  PL/I  entries  of
a l l  user  func t ions ) .  The  va r iab les  in  the  paramete r  desc r ip t ion
conform  to  the  following  convetions:  a  scalar  variable  is  a  short
integer;  a  buffer  is  a  fixed  length  array;  the  length  of  the  buffer
always  represents  the  number  of  bytes.  Some  functions  have  parameters
with  a  specified  value  "par  rvalue".  Different  parameter  values  will
cause  different  actions  to  be  taken  by  the  function.

Page



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

c $ i n i t

declare  c$init  entry;

The  funct ion  " In i t ia l ize"  must  be  cal led  by  any  process  at
ini t ia l izat ion  t ime.  At  execut ion  t ime  the  funct ion  parses  the
PRIMOS  Command  Line  that  contains  system  data.  The  PortManager
uses  the  command  line  to  communicate  with  a  distributed  server
(see  Section  4  about  the  exact  structure  of  the  command  line).

Page



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

c $ e x i t

declare  c$exit  entry;

The  function  "exit"  must  be  called  by  any  process  that  wishes  to
cleanly  exit  from  the  network  environement.  Before  completing  a
user  program,  the  process  notifies  the  PortManager.

Page



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

c $ s t r t

declare  c$strt  entry(char(MAXSTR),  fixed  bin,

char(MAXSTR),  fixed  bin,  fixed  bin)  returns(fixed  bin);
connection  =  c$strt(target_node,  lenl,file_name,  len2,  type);

The  function  "Start  remote  process"  is  performed  in  two  steps:
the  first  step  creates  the  remote  process  according  to  the
specified  code  segment  or  command  file  (the  code  segment  is
assumed  to  be  a  type  SAM  segment  directory).  The  second  step
creates  a  connection  between  the  caller  of  C$STRT  and  the  remote
process.  The  function  returns  the  connection  identifier  that  is
used  during  the  transfer  of  data.  The  function  is  based  on  one
PRIMOS  routine,  PHANT$,  for  creating  a  new  process-  and  on  three
PRIMENET  procedures,  X$C0NN,  X$GC0N  and  X$ACPT,  for  creating  a
connec t ion .

connection  =  an  identifier  of  the  newly  created

connect ion.

target__node  =  a  buffer  containing  the  ASCII  name  of  the
PRIMENET  system  that  is  the  target  of  this

connection  request,

lenl  =  the  length  of  target_node.

seg_name  =  a  buffer  containing  the  ASCII  name  of  the
code  segment  or  command  file  that  is  started

as  a  process.

Ien2  =  the  length  of  seg_name.

type  =  (=1),  each  time  start  the  service  for  private  use;

(=2),  start  the  service  if  it  does  not  exist,
otherwise  connect  to  the  existing  service;

( d e f a u l t :  1 ) .

Page  10



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

c$send

declare  c$send  entry(fixed  bin,  char(MAXBUF),  fixed  bin);

call  c$send(connection,  data,  len);

The  procedure  "Send  and  wait"  sends  a  message  at  the  given
connection.  If  the  message  is  queued  successfully,  the  sender
returns  immediately;  otherwise,  the  sender  is  suspended.  The
procedure  is  used  by  dedicated  processes  that  are  willing  to
suspend  their  computations  unti l  the  system  can  queue  their
messages.  It  is  based  on  two  PRIMENET  procedures:  X$TRAN  for
sending  data  and  X$WAIT  for  wait ing  unti l  the  message  is
successfully  queued.

connection  =  an  identifier  of  the  connection  used

to  send  the  buffer  of  data,

data  =  the  data  buffer,

len  =  the  length  of  data.

Page  11



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

c$recv

declare  c$recv  entry(fixed  bin,char(MAXBUF),fixed  bin,fixed  bin)

re tu rns (fixed  b in ) ;

res_con  =  c$recv(connection,  data,  len,  timeout)

The  function  "Receive  and  copy  into  the  user's  space"  attempts  to
receive  a  message  at  the  given  connection  and  place  the  data  into
the  user  provided  buffer.  If  no  message  arrives  in  a  specified
period  of  time,  the  function  times  out  and  returns  to  the  user.
The  function  is  based  on  two  PRIMENET  procedures:  X$RCV  for
receiving  a  message  and  X$WAIT  for  waiting  until  the  message
a r r i v e s .

res_con  =  output;  an  identifier  of  the  connection  on  which  the

message  has  been  successfully  retrieved;

(=  0),  timeout,  no  message  has  arrived  over

the  specified  period  of  time,

connection  =  input;  an  identifier  of  the  connection  on  which  to

wait  for  a  message,

data  =  input;  a  pointer  to  the  user  provided  buffer  where

the  received  data  is  placed,

len  =  output;  the  actual  length  of  the  received  buffer,

timeout  =  input;  the  maximum  time  interval  in  seconds  that  the

process  is  waiting  for  the  message  to  arrive.

(=0),  the  function  returns  immediately,

(=-1),  the  function  waits  forever,
( d e f a u l t :  - 1 ) .

Page  12



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

c$c los

declare  c$clos  entry(fixed  bin);

cal l  c$clos(connect ion)

The  procedure  releases  all  system  resources  associated  with  the
connection.  The  procedure  is  based  on  PRIMENET  subroutine  X$CLR.

connection  r  an  identifier  of  the  connection.

Page  13



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

3-3  Advanced  User  Interface
This  Section  contains  three  independent  subsections:  Subsection  3.3.1
d e s c r i b e s  f u n c t i o n s  f o r  r e g i s t e r i n g  a n d  s t a r t i n g  n e w  s e r v i c e s ;
Subsection  3-3.2  describes  functions  for  an  advanced  error  handling;
Subsection  3.3.3  has  functions  for  multiplexing  and  flow  control  of  a
stream  of  messages.

Page  14



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

3.3.1  Naming  Service

All  services  in  a  distributed  system  may  be  described  by  a  unique
logical  name  that  is  independent  of  location,  thus  preventing  user
sens i t i v i t y  t o  se rv i ce  l oca t i on .  PE-T I -729  has  a  more  de ta i l ed
d i s c u s s i o n  o f  n a m i n g  a r c h i t e c t u r e .  T h i s  s e c t i o n  d e s c r i b e s  t w o
functions,  C$RGSR  and  C$CRSR,  that  support  such  an  architecture.
Function  C$RGSR  allows  a  user  to  register  a  service  on  a  given  machine;
function  C$CRSR  uses  that  name  in  order  to  connect  to  that  service.

Page  15



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

c$rgsr

declare  c$rgsr  entry(char(MAXSTR),  fixed  bin,

char(MAXSTR),  fixed  bin,char(MAXSTR),  fixed  bin);

char(MAXSTR),  fixed  bin);
call  c$rgsr(name,  lenl,  target_node,  len2,  seg_name,  len3,

password,  len4);
The  function  "Register  a  new  Service"  installs  a  new  service  in
the  distr ibuted  system.  The  service  may  later  be  used  with
function  C$CRSR,  threby,  providing  for  Name-Location  independence,

name  =  a  buffer  containing  the  ASCII  name  of  the

se rv i ce .

lenl  =  the  length  of  name.

target_node  =  a  buffer  containing  the  ASCII  name  of  the
PRIMENET  system  where  to  register

the  service.

Ien2  =  the  length  of  target_node.

seg_name  =  a  buffer  containing  the  ASCII  name  of  the
command  file  or  code  segment  of  the

new  service.

Ien3  =  the  length  of  seg__name.

password  =  a  buffer  containing  the  ASCII  name  of  the

password  of  the  service.
Ien4  =  the  length  of  password.

Page  16



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

c$crs r

declare  c$crsr  entry(char(MAXSTR),  fixed  bin,

char(MAXSTR)  ,  fixed  bin);
call  c$crsr(name,  lenl,  password,  len2);

The  function  "Create  a  Service"  locates  and  creates  a  service  that
has  been  previously  registered.

name  =  a  buffer  containing  the  ASCII  name  of  the  service.

lenl  =  the  length  of  name.

password  =  a  buffer  containing  the  ASCII  password  of  the  service.

Ien2  =  the  length  of  password.

Page  17



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

3.2.3  Error  Handling

Within  a  single  process,  procedure  C$ERR  signals  the  occurrence  of  an
error  condition  with  a  given  severity  code.  Procedure  C$ERR  typicaly
signals  a  network  error  condition  with  a  certain  severity  code.  Any
user  defined  error  might  also  be  signaled  with  the  same  procedure
C$ERR.  To  protect  a  procedure  call  from  error  signals,  a  process  may
call  function  C$ERST  to  provide  an  "umbrella"  for  error  conditions
signaled  with  procedure  C$ERR.  A  more  powerful  procedure  C$ERHN  is
similar  in  function  to  procedure  C$ERST,  but  it  provides  an  error
handler  to  be  called  to  "fix"  the  error.  If  the  error  condition  is
i ndeed  " fixed " ,  t he  use r  p rog ram  con t i nues  f r om  the  po in t  o f
i n t e r r u p t i o n .
Another  way  to  handle  network  errors  gracefully  is  to  wait  for  a
message  to  arrive  at  any  connection.  A  change  in  status  of  one
connection  does  not  affect  the  status  of  the  running  process.  The
process  simply  waits  for  the  message  to  arrive  at  another  connection.
To  enable  the  process  to  cleanup  its  state,  function  C$CHCK  checks  the
status  of  the  connection.

Page  18



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

c$er r

declare  c$err  entry(fixed  bin,  fixed  bin,

char(MAXSTR),  fixed  bin)

o p t i o n s ( v a r i a b l e ) ;
ca l l  c$err (sever i ty,  er ror_code,  data, len) ;

Procedure  "Error"  signals  the  occurrence  of  an  error  condition.
The  error  condition  is  propagated  upwards  in  the  stack.  At  a
higher  level,  function  C$ERST  might  "catch"  the  error  condition  by
returning  control  to  the  caller  of  C$ERST.  The  "catch"  occurs  if
the  function  C$ERST  is  called  with  a  higher  severity  code  than  the
procedure  C$ERR  is  called.  For  example,  the  following  call  to
procedure  C$ERR,

CALL  C$ERR(50,  ...)

is  caught  by  the  following  call  to  function  C$ERST,

res  =  C$ERST(100,  ...)

If  no  call  to  function  C$ERST  is  present,  the  error  condition
propagates  to  the  top  level  and  aborts  the  program.  If  the  error
is  caught  by  function  C$ERHN,  it  invokes  the  specified  exception
handler  with  the  user  provided  data.  The  exception  handler  may
"fix"  the  error  and  return  to  the  point  of  interruption  or  fail  to
"fix"  and  allow  the  error  condition  to  propagate  to  a  higher  level
at  the  stack.  The  option  "options(variable)"  allows  a  user  to
specify  only  the  first  two  arguments:  severity  and  error_code.

severity  =  severity  code  as  chosen  by  the  user;

(=0),  do  nothing  but  log  the  event.

error_code  =  the  user  generated  error  code.
data  =  a  user  buffer  of  data  that  is  passed  to  the

exception  handler  in  C$ERHN  (optional),

len  =  the  length  of  data  (optional).

Page  19



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

c$ers t

declare  c$erst  entry(fixed  bin,  fixed  bin,  fixed  bin,

entry(fixed  bin,  char(MAXSTR),  fixed  bin),
fixed  bin,  char(MAXSTR),  fixed  bin)

re tu rns (fixed  b in )  op t ions (va r iab le ) ;
err  =  c$erst(severity,  error_code,  res,

user_function,  con,  data,  len);

The  function  "Error  Set"  protects  user_function  from  error  signals
w i th  a  lower  sever i t y  (see  p rocedure  C$ERR) .  The  op t ion
"options(variable)"  allows  a  user  to  pass  a  procedure  with  any
number  of  arguments  of  any  type.

err  =  (=0),  no  error  was  caught;

otherwise,  an  error  was  signaled,
see  error_code.  severity  =  a  user  supplied  severity  code.

error_code  =  error  code  that  was  returned  by  C$ERR.
res  =  returned  result  of  user__funtion.

user_function  =  external  procedure  to  be  protected.
con=  an  identifier  of  the  connection.

data=  the  buffer  of  data.

len=  the  length  of  data.

N.B.  These  three  arguments  represent  a  typical

example  of  user  function.

Page  20



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

c$erhn

declare  c$erhn

entry(fixed  bin,  fixed  bin,  fixed  bin,

entry(char(MAXSTR),  lenl),

entry(fixed  bin,  char(MAXSTR),fixed  bin),

fixed  bin,  char(MAXSTR),  fixed  bin)

re tu rns(fixed  b in )  op t ions(var iab le ) ;

err  r  c$erhn(severity,  error_code,  res,  handler,

user__function,  con,  data,  len);

The  function  "Error  Set  and  provide  an  error  Handler"  differs  from
function  C$ERST  only  in  that  it  provides  an  exception  handler  that
may  "fix"  the  error.

handler  =  external  function  having  two  arguments:  DATA

and  LEN  which  are  passed  to  procedure  C$ERR.

N.B.  The  handler  is  invoked  upon  occurrence

of  the  error  and  returns  a  boolean  value

a  boolean  value  indicating  whether  or

indicating  whether  or  not  to  abort  the  procedure
call  in  progress.  If  the  returned  value  is  TRUE,

the  process  continues  from  the  point  of

interruption;  otherwise,  the  process  returns
to  the  caller  of  user_function,  a  procedure

at  the  higher  level  in  the  stack.

Page  21



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

c$chcn

declare  c$chcn  entry(fixed  bin,  (2)fixed  bin)

r e tu rns ( fixed  b i n ) ;

res  =  c$chcn(connection,  status);

The  func t ion  "Check  Connect ion"  checks  the  s ta tus  o f  the
connection  .

res  =  returned  result  of  the  function;

(=0),  the  connection  is  dead;

(~=0),  the  connection  is  alive,

con  r  identifier  of  the  connection,

status  =  the  returned  connection  status  array  that  is

used  to  hold  virtual  circuit  status

(see  PRIMENET  manual).

Page  22



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

3-3.4  Flow  Control  and  Multiplexing

PRIMENET  can  hold  only  a  limited  number  of  messages  in  transit.  If  a
sender  exceeds  the  system's  capacity  to  hold  messages  in  transit,  the
sender  is  suspended  (see  procedure  C$SEND).  A  receiver  may  force  a
particular  sender  to  be  suspended  by  locking  the  queue  at  a  given
connection.  This  is  convenient  for  a  receiver  waiting  for  a  message  to
arrive  at  any  open  connection.  A  call  to  procedure  C$L0CK  locks  the
queue  at  a  given  connection;  a  call  to  procedure  C$UNL0  unlocks  the
connect ion.

Page  23



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

c$lock

declare  c$lock  entry(fixed  bin);

ca l l  c$ lock(connect ion) ;

The  procedure  "Lock"  locks  the  connection  with  the  effect  that  no
messages  on  the  specified  connection  are  accepted.

connection  =  identifier  of  the  connection.

Page  24



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

c$unlo

declare  c$unlo  entry(fixed  bin);

cal l  c$unlo(connect ion) ;

The  procedure  "Unlock"  unlocks  the  connection  allowing  messages  on
the  specified  connection  to  be  accepted.

connection  =  identifier  of  the  connection.

Page  25



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

4  Additional  Programming  Tools

4.1  Introduction  to  the  Structure  of  Cache  Files

The  Distributed  Operating  System  is  controlled  by  three  tables:  (1)
Servers.Cache  which  is  accessed  by  LocalAgent;  (2)  Servers.Node  which
is  accessed  by  PortManager;  (3)  Servers.All  which  is  accessed  by
NamingServer.  Each  table  is  encoded  as  an  ASCII  files  that  may  be
edited  by  an  authorized  user  or  modified  by  an  associated  program.  The
existance  of  each  file  is  optional,  although  the  system  may  create  it
during  execution  of  a  program.  For  example,  Servers.Cache  is  updated
by  LocalAgent  that  remembers  the  most  frequently  used  services.  The
absence  of  this  file  may  result  in  additional  requests  being  sent  to
the  NamingServer.  The  file  Servers.Node  contains  al l  the  services
reg is tered  on  th is  par t icu lar  node.  The  fi le  is  updated  by  the
PortManager  which  adds  new  services  to  the  system.  The  file  is  created
by  users  who  register  new  services.

The  service  tables  are  encoded  using  conventions  similar  to  those  by
PRIMOS  for  encoding  command  lines.  Each  token  is  encoded  by  a  key  word
and  value  pair.  The  following  example  is  a  description  of  one  server
in  either  the  file  Servers.Cache  or  Servers.Node  .

-N  Serverl  -L  location  -S  SegmentFile

-M  message_trace_option

-E  error_logging_option  -A  access_control_l ist

-P  port_number  -N  Server2

To  change  the  characteristics  of  a  server,  the  user  changes  the  file
Servers.Node;  to  change  the  Agent's  viewpoint  of  the  server,  the  user
changes  Servers.Cache  file  (see  Section  4.4  on  debugging  communicating
processes).  Finally,  to  define  characteristics  of  an  agent  the  user
enters  parameters  in  a  command  line.  For  example,  to  invoke  an  agent
with  the  message  trace  option  the  user  enters  the  following  command:

SEG AGENT -M 1

Page  26



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

4.2  Message  Tracing

-M  1  this  option  enables  the  time-stamped  message  trace.  facility.
For  each  message  the  system  stores  the  following  PL/I  record:

dec la re

1  Trace,

2  UserNumber  fixed  bin,

2  Connection  fixed  bin,

2  Type  fixed  bin,

2  MessageCount  fixed  bin,

2  Len  fixed  bin,

2)  Time  fixed  bin(31)  ,

2)  Blank  fixed  bin;

The  system  collects  the  message  header  in  a  PRIMOS  segment  pointed  to
b y  t h e  v a r i a b l e  T r a c e _ S e g .  ( I n c l u d e  e n t r y  " s y  T r a c e  S e g
SEGMENT_NUMBER)  in  the  load  command).  After  completing  the  program's
execution,  the  trace  information  may  be  dumped  to  a  file.

Page  27



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

4.3  Error  Logging

-e  1  opens  an  error  logging  file  for  that  process.

All  calls  to  the  procedure  C$ERR  are  registered  within

the  fi le  "E r ro r. l og " .

4.4  Debugging  the  Interaction  Between

a  Pair  of  Communicating  Processes

-p  port-number,  a  debugging  option  allowing  a  user  to

assign  manually  a  port  to  a  service.

To  invoke  the  server,  for  example,  a  user  types

SEG SEGMENT_FILE -p 5

to  invoke  the  agent,  the  user  must  edit  the  file  Servers.Cache  so  as  to
modify  the  entry  corresponding  to  the  server  that  uses  the  chosen  port
number.

Page  28



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

6.  Conclusions

The  purpose  of  this  project  was  both  to  develop  a  minimal  prototype
system  and  to  develop  a  methodology  for  distributed  programming  at
PRIME.  This  document  describes  all  the  primitives  of  the  system  and
also  gives  a  few  examples  of  distributed  programs.  The  sources  of  some
such  programs  appear  in  the  Appendix.

Our  experience  with  a  real  system  and  real  examples  indicates  that  our
methods  are  sound  and  that  even  crude  exception  handling  mechanisms
provides  adequate  means  for  writing  robust  programs.  The  next  step  is
to  build  more  applications  and  gain  more  experience  with  distributed
programs.

Page  29



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

/ *  A p p e n d i x :  P L / I  E x a m p l e s  * /
/ *  * /

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /
This  program  is  a  client  for  the  distributed  "Adventure"  server.
It  acts  like  a  remote  virtual  terminal.  Upon  server  requests,
it  prompts  the  user  for  more  input;  otherwise,  it  displays
the  data  on  the  screen.  The  procedure  HandleMessage  is
protected  from  network  errors  with  the  function  C$ERST

The  client  communicates  with  two  servers:  "Adv1"  and  "Adv2".  If  one
server  dies,  the  client  restarts  another  server.  Both  servers  must  have
been  previously  registered.

The  main  program  waits  for  a  request  in  an  infinite  loop.
The  request  is  handled  by  procedure  HandleMessage.  All
network  errors  are  protected  with  function  C$ERST.  If  an  error  occurs,
the  program  an  prints  an  error  code,  and  the  message

"connecting  to  another  system".
Thereafter,  it  creates  the  alternate  server.

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

Page  30



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

/ *  C L I E N T  P R O C E S S  * /

main:  procedure;

dec la re
(code,  res,  len,  len4)  fixed  bin,
outcon  fixed  bin,
current  fixed  bin,
tempstr  char(MAXSTR),
Games(2)  char(MAXSTR),
Msg  char(MAXBUF);

/ *  M A I N  P R O G R A M  * /

p u t  s k i p  l i s t ( ' s t a r t e d ' ) ;
ca l l  c$ i n i t ;
GamesO)  =  'Adv1';
Games(2)  =  'Adv2';
len  =  4;
p u t  s k i p  l i s t ( ' i n i t i a l i z e d ' ) ;

current  =  1;
tempstr  =  Games(current);
outcon  =  c$crsr(Games(current),  len,  '',  0);

put  sk ip  l is t ( 'connected ' ) ;

* /

0  then

s t e m ' ) ;

call  EncodeFortranString(Msg,  'yes',  3);
call  c$send(outcon,  Msg,  3*4);  /*  the  length  of  FORTRAN  buff

do  whi le( '1 'B);
if  c$erst(SYSERR,  code,  res,  HandleMsg,  outcon,  Msg,  len)  ~r

do;
put  skip  list('error:r',  code,  '  connecting  to  another  sy

if  current  =  1
then  current  =  2;
else  current  =  1;
tempstr  =  Games(current);
outcon  =  c$crsr(Games(current),  len,  '',  0);
put  sk ip  l i s t ( ' connected ' ) ;
put  skip  l ist( '  ' ) ;

end;
end;

Page  31



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

/*  CLIENT,  support  routines  */

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /
This  procedure  implements  the  virtual  terminal.  Upon  server  requests,
(TIOFIXO)  =  -1),  the  procedure  prompts  the  user  for  more  input;
otherwise,  the  procedure  displays  data  on  the  screen.  In  both
cases,  the  data  must  be  converted  from  FORTRAN  string  representation
into  PL/I  string  representation.

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

HandleMsg:  procedure(con,  TIOArr,  len)  returns(fixed  bin);
dec la re

TIOArr  char(MAXBUF),
con,
len  fixed  bin;

dec la re
TIOFix(HALFBUF)  fixed  bin  defined(TIOArr),
timeout  fixed  bin,
i  fixed  bin,
FirstNum  fixed  bin,
Str  char(128),
VarStr  char(128)  var;

timeout  =  c$recv(con,  TIOArr,  len,  500);
if  timeout  =  0  then  call  c$err(SYSERR,  NORESPONSE);
len4  =  len/4;
FirstNum  =  TIOFixd  )  ;
if  FirstNum  ~=  -1  then

do;
cal l  DecodeFortranStr ing(TIOArr,  Str,  len4);
put  skip  edit(substr(Str,  1,  len4))  (a);

end;
e lse
do;

g e t  l i s t ( Va r S t r ) ;
len4  =  length(VarStr);
cal l  EncodeFortranStr ing(TIOArr,  VarStr,  len4);
call  c$send(con,  TIOArr,  len4*4);  /*  the  length  of  FOR

TRAN  buff  */
end;

r e t u r n ( 1 ) ;
end  HandleMsg;

EncodeFortranString:  procedure(TIOArr,  VarStr,  len4);
dec la re

TIOArr  char(MAXBUF),
1  TIOMsg  defined(TIOArr),

2  RECU28)  ,
3  Data  char(1),
3  BlankData  char(3),

VarStr  char(128)  var,
len4  fixed  bin;

dec la re

Page  32



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

i  fixed  bin;

/*  encode  into  FORTRAN  LONG  INTEGER  FORMAT  */

do  i=1  to  len4;
TIOMsg.Data(i)  =  substr(VarStr,  i,  1);
TIOMsg.BlankData(i)  =  '  ';

end;
l e n 4  =  l e n 4  +  1 ;  / *  a p p e n d  a  b l a n k  * /
TI0Msg.Data(len4)  =  '  ';

end  EncodeFortranString;

DecodeFortranString:  procedure(TIOArr,  Str,  len4);
dec la re

TIOArr  char(MAXBUF),
1  TIOMsg  defined(TIOArr),

2  REC(128),
3  Data  char(1),
3  BlankData  char(3),

Str  char(128),
len4  fixed  bin;

dec la re
i  fixed  bin;

/*  decode  from  FORTRAN  LONG  INTEGER  FORMAT  */

do  i=1  to  len4;
substr(Str,  i,  1)  =  TIOMsg.Data(i);

end;
end  DecodeFortranString;

Page  33



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

/*  ADVENTURE-SERVER  PROCESS,  NETWORK  INTERFACE  */

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /
This  set  of  network  interface  routines  replaces  the  original
terminal  I/O  routines.  Incoming  data  is  received
with  procedure  M$RCCP;  output  data  is  sent  with  procedure
M$SEND.  The  variable  NetOn  indicates  whether  the  network  package
is  being  used.

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

M$RCCP:  procedure(con,  buf,  len);

declare  (con,  len)  fixed  bin(3D;
declare  buf  char(512),

NetOn  fixed  bin(15)  external,
lenl  fixed  bin(15);

if  NetOn  ~=  0  then
con  =  c$recv(-1,  buf,len1,  -1);

len  =  lenl;
r e t u r n ;
end M$RCCP;

M$SNWT:  procedure(con,  buf,  len);

declare  (con,  len)  fixed  bin(31);
declare  buf  char(512),

dum  fixed  bin,
(code,  res)  fixed  bin,
NetOn  fixed  bin(15)  external;

if  NetOn  "=  0  then
dum  =  c$erst(SYSERR,  code,  res,  c$send,con,  buf,  len);

r e t u r n ;
end M$SNWT;

M$INIT:  procedure(con);

declare  con  fixed  bin(31);
declare  buf  char(512),

NetOn  fixed  bin(15)  external  init(1),
len  fixed  bin(15);

if  NetOn  ~=  0  then
do;

c a l l  c $ i n i t ( ) ;
con  =  c$recv(-1,  buf,len,  -1);

end;
end  M$INIT;

Page  34



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

/ *  N E T U S E R . P L 1  H E A D E R  * /
/*  This  is  a  standard  header  typicaly  used  by  a  server  */

MAXSTR by 60,
MAXBUF by 512,
HALFBUF by  256,

/ *  c o m m o n  e r r o r s  * /

FATAL  by  100 ,
SYSERR  by  50,
USRERR  by  25,

NOTIMP  by  -1,
BADPROT  by  -2,
NORESPONSE by -3;

/*  msg(1)  values:  request  and  reply  */
/ *  r e p l y  * /

REPJ3K  by  0,
REP_ERR  by  1;
/ *  r e q u e s t  * /

dec la re
(addr,nul l ,  substr,  index,  length)  bui l t in ;dec la re

c$err  entry(fixed  bin,  fixed  bin),
c$send  entry(fixed  bin,  char(MAXBUF),  fixed  bin),
c$recv  entry(fixed  bin,  char(MAXBUF),  fixed  bin,  fixed  bin)

re tu rns (fixed  b in ) ,
c$clos  entry(fixed  bin),

c$erst  entry(fixed  bin,  fixed  bin,  fixed  bin,
entry(fixed  bin,  char(MAXBUF),fixed  bin)  return

s (fixed  b in ) ,
fixed  bin,char(MAXBUF),  fixed  bin)

re tu rns (fixed  b in ) ,

c$erhn  entry(fixed  bin,  fixed  bin,  fixed  bin,
entry(fixed  bin,char(MAXBUF),  fixed  bin)  return

s(fixed  b in) ,
fixed  bin,char(MAXBUF),  fixed  bin,

entry(char(MAXSTR),  fixed  bin)  returns(fixed  bi
n))

re tu rns (fixed  b in ) ,
c$chcn  entry(fixed  bin,  (2)fixed  bin)  returns!fixed  bin);

dec la re
c$ in i t  en t ry,
c$strt  entry(char(MAXSTR),  fixed  bin,  char(MAXSTR),

Page  35



PRIMELINK,  a  High  Level  Service  on  Top  of  Today's  PRIMENET  PE-TI-900

fixed  bin,  fixed  bin)
r e t u r n s ( fi x e d  b i n ) ,

c$rgsr  entry(char(MAXSTR),  fixed  bin,  char(MAXSTR),  fixed  bi
n,

n)

char(MAXSTR),  fixed  bin,
char(MAXSTR),  fixed  bin,  fixed  bin),

c$crsr  entry(char(MAXSTR),  fixed  bin,  char(MAXSTR),  fixed  bi

re tu rns (fixed  b in ) ;
dec la re

DefaultArg  entry(fixed  bin,  fixed  bin,  fixed  bin);
dec la re

Debug  fixed  bin  external;

Page  36


	Cover Page
	1
	Table of Contents
	2
	Introduction
	3
	An Informal Example
	4
	5
	User Interfaces
	-- Introduction
	6
	-- Minimal User Interfaces
	7
	8
	9
	10
	11
	12
	13
	-- Advanced User Interfaces
	14
	---- Naming Service
	15
	16
	17
	---- Error Handling
	18
	19
	20
	21
	22
	---- Flow Control and Multiplexing
	23
	24
	25
	Additional Programming Tools
	26
	27
	28
	Conclusions
	29
	Appendix: A PL/I Example
	30
	31
	32
	33
	34
	35
	36

